

A Comprehensive Analysis of Cable Bolt Anchorage

Characteristics

Illinois Mining Institute – Marion, Il

September 9, 2014

Authors

- Dakota Faulkner
- Thomas Cook R&D/Min
- Dr. John Stankus

R&D/Mechanical Engineer, KMS R&D/Mining Engineer, KMS

President, KMS

Keystone Mining Services (KMS), Affiliate Engineering Company of Jennmar Corporation. Pittsburgh, Pennsylvania

2

Presentation Outline

- **1.** Introduction.
- 2. Cable Bolts Test Specimens.
- 3. Anchorage Capacity per Linear Length of Encapsulation.
- 4. Effects of Counter-Clockwise Rotation.
- 5. Encapsulation Safety Factor.
- 6. Off-Axis Capacity.
- **7.** Effects of Long-Term Creep.
- 8. Conclusions.

Introduction

SERVICES

Introduction

- Traditional cable bolts incorporated with birdcages and two component polyester resin cartridges have been a tried and proven system.
- With a variety of cable bolts available to the mining industry. Where do these bolts rank in their actual performance?

Cable Bolt Test Specimens

- Indented Cable.
- Bird Caged Cable.

• Plain Cable.

/2014 6

Tests Conducted

Compared Characteristics-

- 1. Anchorage capacity per linear length of encapsulation.
- 2. Effects of reverse spinning on installation.
- 3. Off-axis capacity associated with angle bolting.
- 4. Effects of long-term creep.

Anchorage Capacity per Linear Length of Encapsulation

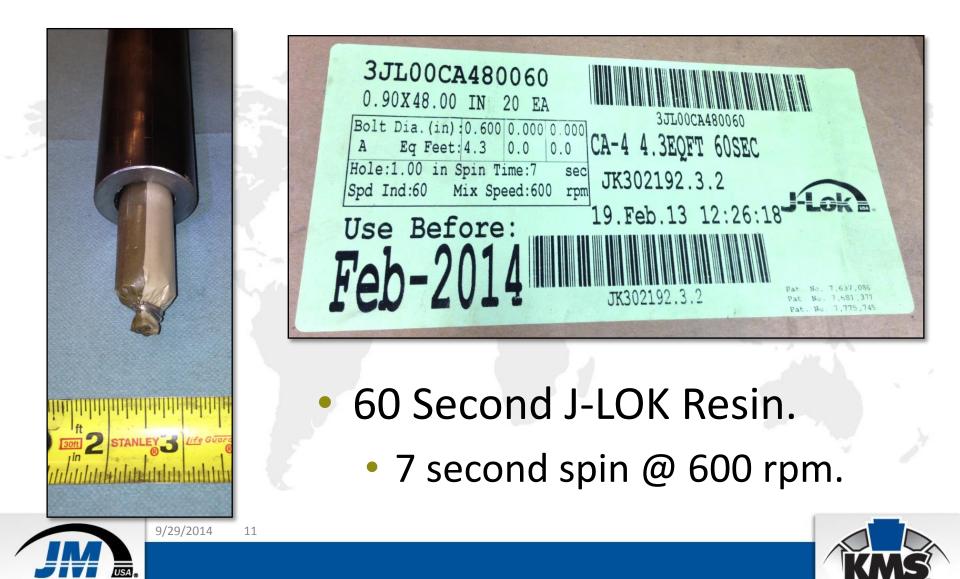
Test Overview

9/29/2014

9

- Tests used to determine the actual anchorage capacity with various lengths of encapsulation.
- Numerous samples tested from 6" to 48".
- Used internally threaded steel bore holes to act as the drill hole.

Bore Tubes ("Drill Hole")


1" ID x 1.75" OD (.375" wall).

Tapped 27 x 3 metric thread.

In accordance to ASTM F432 A3.1.2 for Chemical Grouting Materials.

J-LOK Resin

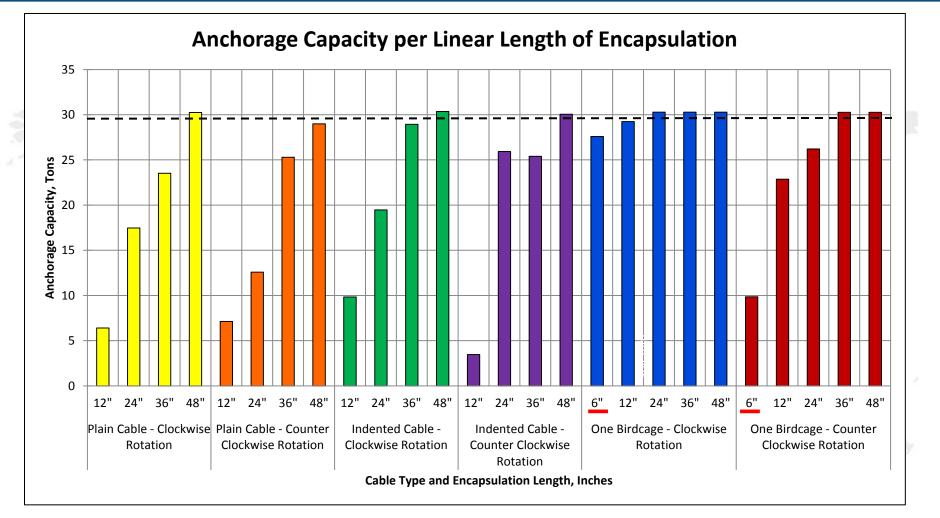
Cable Preparation

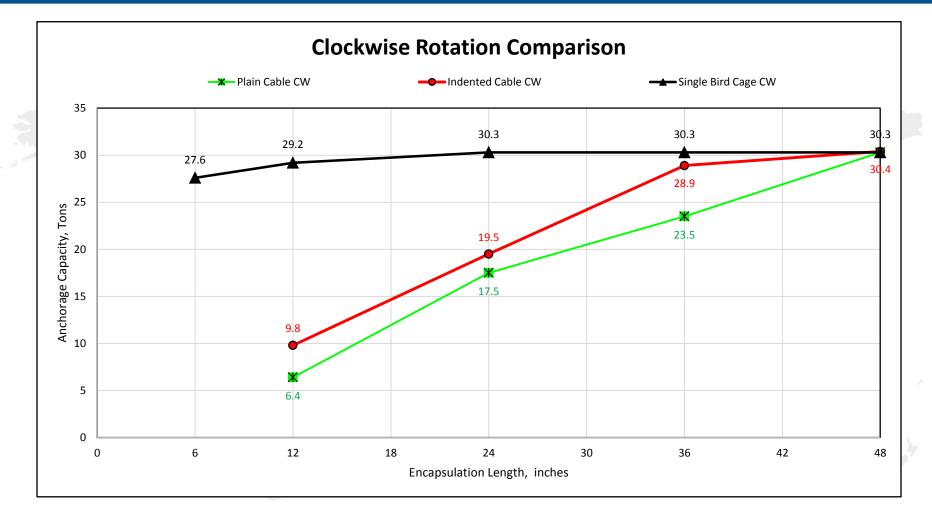
9/29/2014

12

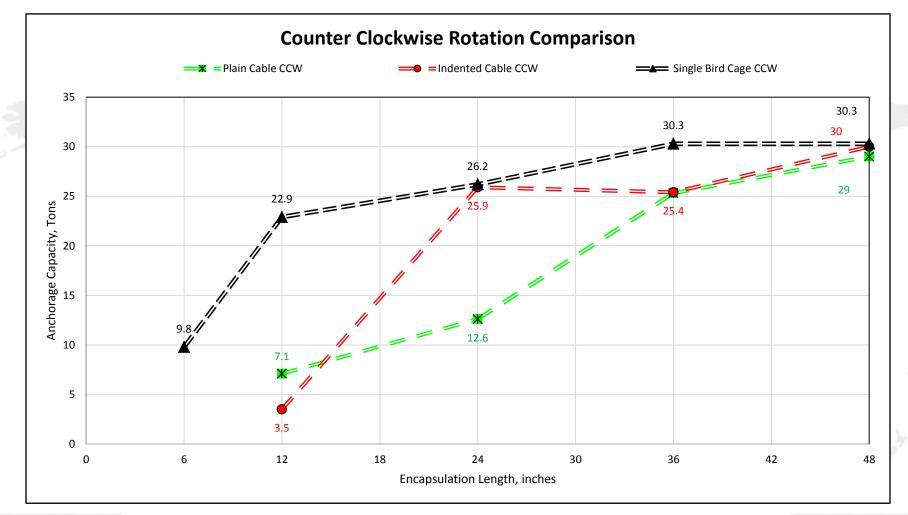
- Cable length 36" + encapsulation length.
- Samples free of oil, dirt, & rust.
- Packer added to compress resin above encapsulation zone.

Installation with Test Lab Bolter


- J-LOK cartridge inserted in bore tube.
- Bolt inserted to back of borehole then spun.
- 2 minute hold time to limit variables.


Anchorage Capacity per Linear Length of Encapsulation Results

Clockwise Rotation Comparison



9/29/2014 15

Counter-Clockwise Rotation Comparison

9/29/2014 16

Anchorage Capacity per Linear Length of Encapsulation

Sample Type	Rotation Direction	Encapsulation Length, in.	Average Peak Capacity, tons	Percentage of ASTM Minimum Break Strength ¹ , %
Plain Cable	<u>Clockwise</u>	12"	6.4	22%
		24"	17.5	60%
		36"	23.5	80%
		48"	30.3	103%
<u>, c</u>	Counter- Clockwise	12"	7.1	24%
<u>Plai</u>		24"	12.6	43%
		36″	25.3	86%
		48"	29.0	99%
	<u>Clockwise</u>	12"	9.8	34%
ole		24"	19.5	66%
Cal		36″	28.9	99%
о р		48"	30.4	104%
lte	Counter-Clockwise	12"	3.5	12%
ler		24"	25.9	89%
Indented Cable		36″	25.4	87%
		48"	30.0	103%
	<u>Clockwise</u>	6″	27.6	94% 🛑
		12"	29.2	100%
One Birdcage		24"	30.3	103%
		36"	30.3	103%
rd		48"	30.3	103%
Bi	Counter- Clockwise	6"	9.8	34%
ne		12"	22.9	78%
ō		24"	26.2	89%
		36"	30.3	103%
		48"	30.3	103%

¹ASTM minimum break strength is 58,600 lbf for 0.6 in. (15 mm) cable as per ASTM F432-95.

Encapsulation Safety Factor

JENNMAR

Encapsulation Safety Factor

(1)

Applies a safety factor to the anchorage of each respective cable.

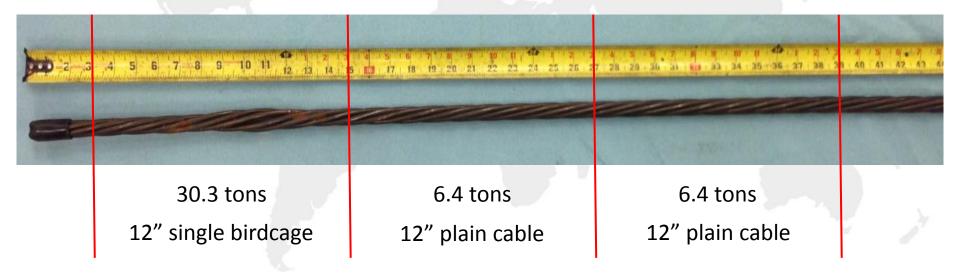
 $SF_{re} = \frac{Obtained \ Load}{Designed \ Load}$

• $SF_{re} = \frac{(Obtained Load + ((c-p)*l))}{Designed Load}$

(When $SF_{re} > 1$ before 48" of encapsulation.)

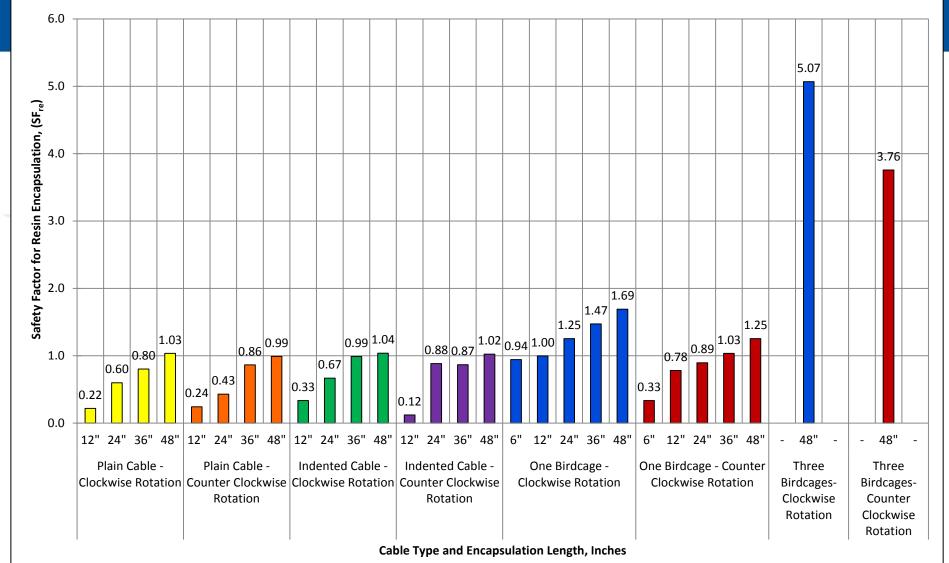
- c The encapsulation length of the sample.
- p The encapsulation length when the SF_{re} is equal to one.

I - The load capacity per inch of encapsulation calculated from a 12" cable sample.



Resin Anchorage Safety Factor Calculation

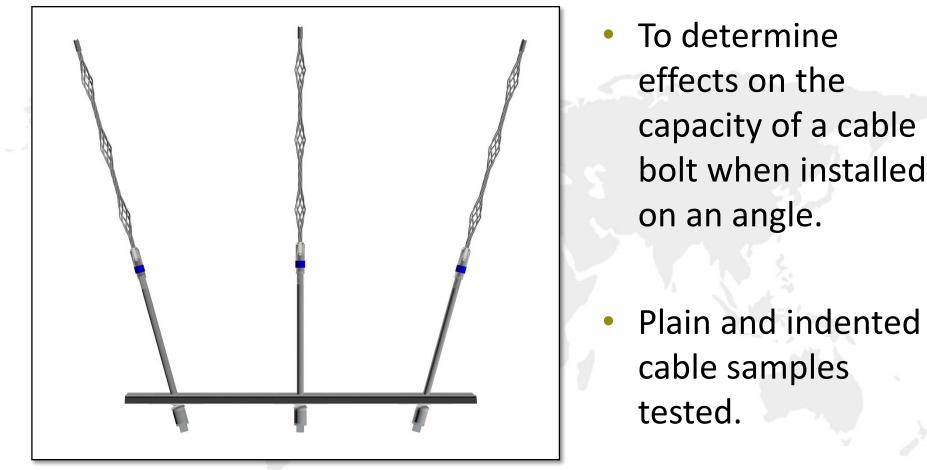
• 36" single birdcage with clockwise rotation:


 $SF_{re} = \frac{43.1 \ tons}{29.3 \ tons} = 1.47$

Safety Factor for Resin Encapsulation

JENNMAR

9/29/2014 21


Angle Bolt Capacity

SERVICES

Angle Bolt Capacity

JENNMAR B-RIGID TRUSS SYSTEM.

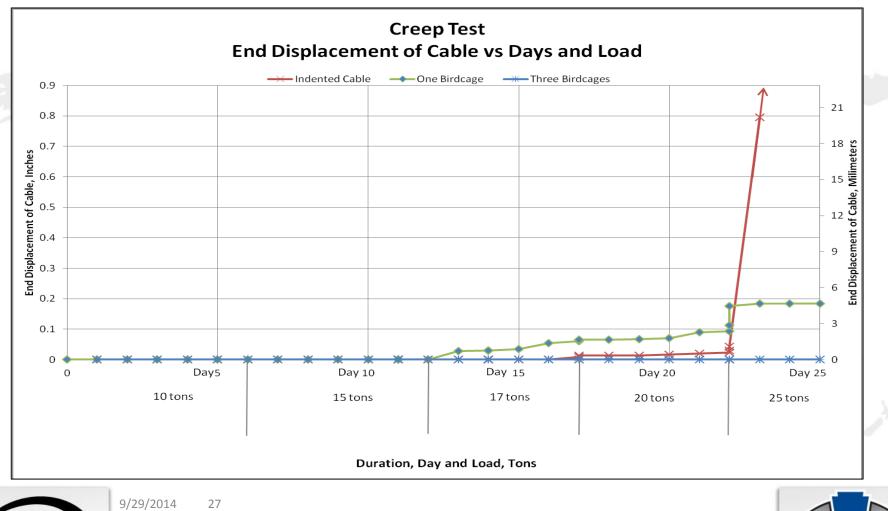
9/29/2014 23

Angle Bolt Capacity Results

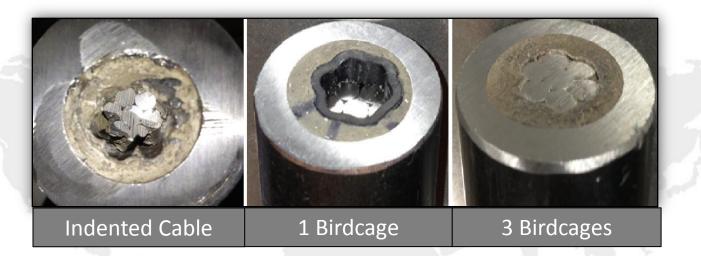
Angle Bolt Capacity Results							
Test Cable	Offset Angle, degrees	Average Peak Load, Ibf	Percentage of ASTM Minimum Break Strength ²	100			
Diain	45°	55,000	94%				
Plain	30°	60,500	103%				
	45°	45,500	78%				
Indented	30°	59,500	102%				

²ASTM minimum break strength of 0.6 in. (15 mm) cable is 29.3 tons, per ASTM F432-95.

Effects of Long-Term Creep


Effects of Long-Term Creep

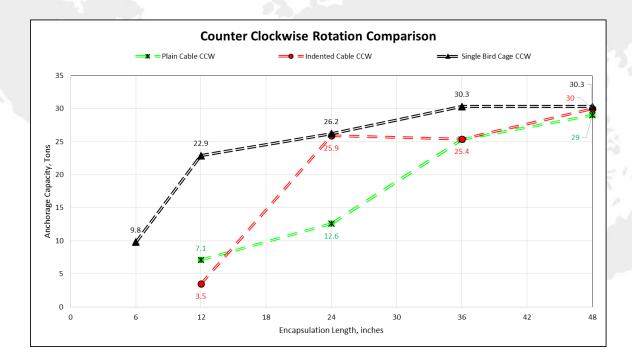
- Creep Tester-
 - Designed to maintain a constant load as a function of time.
 - Recorded end displacement over time and load.
- Test Samples-
 - Indented cable.
 - Plain cable with one bird cage.
 - Plain cable with three bird cages.


Long-Term Creep Test Results

Effects of Long Term Creep

Sample	Indented Cable	One Birdcage	Three Birdcages
Total Movement	> 0.80"	0.19"	0.01"

SERVICES


- Determined that cable bolts incorporated with birdcages are a tested & proven system.
 - . As little as 6" of resin can break the cable.
 - ii. Indented and plain cable need 36" and 48" respectively.
 - iii. Bird cages help centralize the cable.

• Counter-clockwise rotation can provide inconsistent results in the cable anchorage capacity.

9/29/2014 31

 There is a potential for creep on plain and indented cable samples when loaded over a long period of time.

- ASTM F432-10 currently requires short encapsulation tests for thread-deformed reinforcing bar.
- No such tests exist for cable bolts.
- Highly recommend the industry development of a specification for encapsulation tests of grouted cable bolts.

TUNNELING

JENNMAR

LEADING THE WAY IN GROUND CONTROL TECHNOLOGY

JENNMAR[™] and KMS WOULD LIKE TO THANK YOU FOR THE OPPORTUNITY TO BE HERE TODAY.

Contact Information

JENNMAR CORPORATION

258 KAPPA Dr. P.O. BOX 111253 PITTSBURGH, PA 15238 (412) 963-9071

WWW.JENNMAR.COM

Dakota Faulkner DFAULKNER@JENNMAR.COM (412) 963-5388

9/29/2014 35

