

Illinois Mining Institute Annual Meeting September 9, 2014

Drying Process of Latex Dust Suppressant Films

Tony Malloy

© 2013 Quaker Chemical Corporation. All rights reserved.

Attributes of Dust Suppressants

- **»** Prevent Health Hazards
- » Reduce Safety Hazards
- » Meet Regulatory Compliance
- » Control Environmental Hazards
- » Reduce Operating Costs

Variety of Dust Suppressants

- » Water
- » Wetting agents added to water
- » Moisture Absorbing Products
- **» Organic Petroleum Products**

- » Organic Non-petroleum
- » Electrochemical
- » Synthetic Polymer
- » Clay Additives

A Latex Dust Suppressant consists of colloidal polymeric particles, ranging in size between 1 nm ($1x10^{-9}$ meter) and 1μ m ($1x10^{-6}$ meter), that are dispersed in water. The dispersed particles are in constant motion (Brownian Motion), which help provide product stability. After applied to a surface, the liquid evaporates and Latex particles gradually coalesce to form a continuous film.

Common Materials in Latex Dust Suppressants

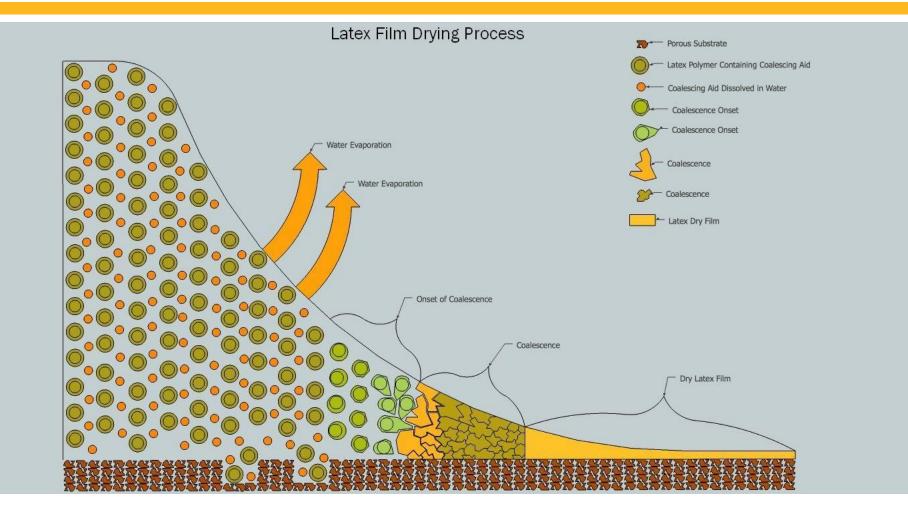
» Polymers;

- Primary film generating ingredient
- » Coalescing agents;
 - Softens latex polymer to allow them to combine together during film generation
- » Wetting agents;
 - Multiple functions: wetting, dispersing, dispersion stabiliser, & emulsifying

Common Materials in Latex Dust Suppressants

- » Viscosity modifiers;
 - Not often used in Latex dust suppressants
- » Stability additives;
 - Essential for providing a stable concentrate & application emulsion
- » Water;
 - Main carrier of all ingredients

Film Formation Process Phases



- » Evaporation of water and coalescing agent
- » Gradual coalescence of Latex particles

Evaporation Process

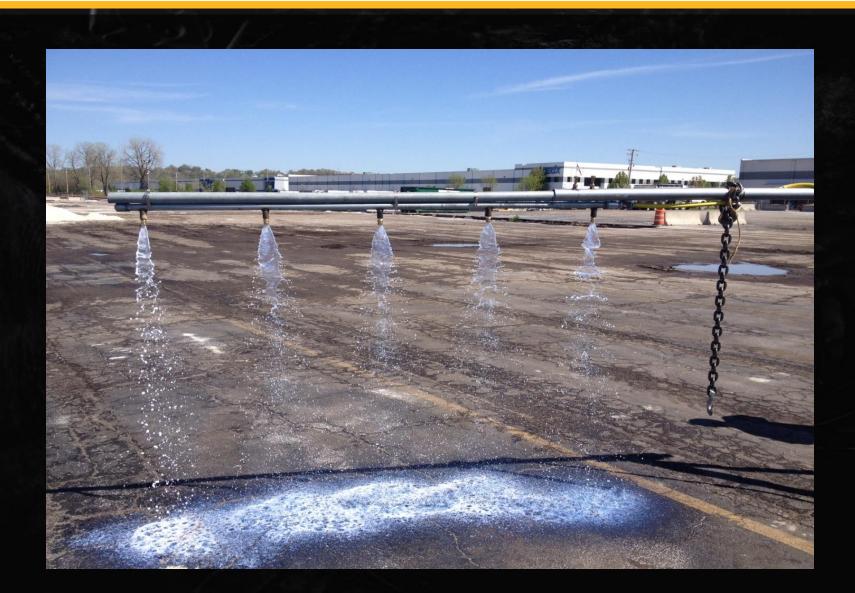
Evaporation Data of Lab Sample

8.2cm dish at RT

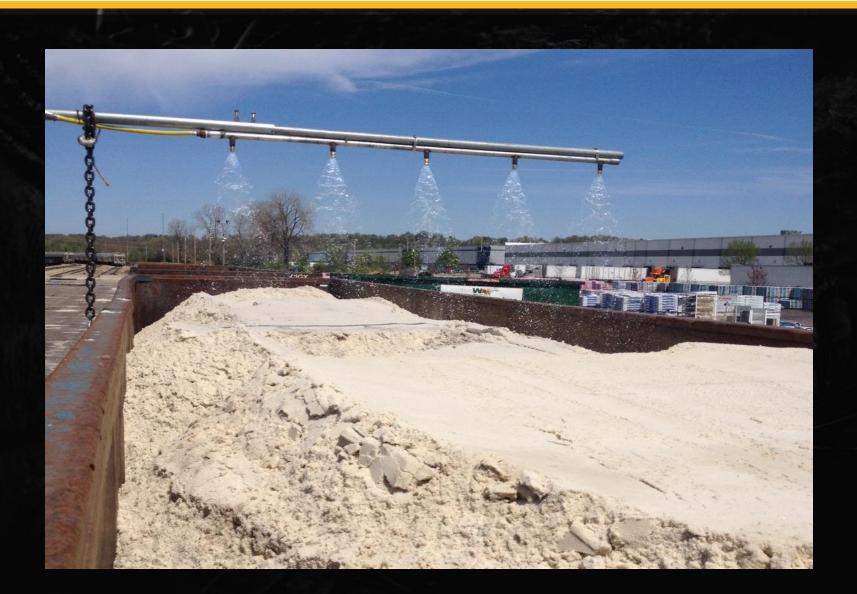
Time	Film Appearance	Liquid and solid weight	Liquid weight	Percent Evaporation
Start	White emulsion	7.8475	7.7575	0
Day 2	White emulsion	1.8508	1.7608	77.3020
Day 3	Clear film	0.091	0.0010	99.9871
Day 4	Clear film	0.0908	0.0008	99.9897
Day 5	Clear film	0.0904	0.0004	99.9948
Day 8	Clear film	0.0906	0.0006	99.9923
Day 9	Clear film	0.0911	0.0011	99.9858
Day 10	Clear film	0.0908	0.0008	99.9897
Day 11	Clear film	0.0900	0	100.0
Day 12	Clear film	0.0900	0	100.0

Factors Effecting Evaporation Rate

- » Strength of application mixture & application rate
- » Amount of exposed surface area
- » Solar radiation and air temperature
- » Air flow or wind speed above the emulsion
- » Increase emulsion temperature will increase the evaporation rate
- » Air humidity


Coalescent Additive Properties

- » Active solvent for the base polymer
- » Lowers the Minimum Film Forming Temperature (MFFT) of the polymer
- » Low solubility in water
- » Has an evaporation rate lower than water


Latex Emulsion Spraying System

Spraying Latex Emulsion on Sand

Conclusions

- » Concentration of Latex Dust Suppressant application mixture influences Drying Process
- **» Weather conditions influence Drying process**
- » Complete Drying Process can take up to 10 days

THANK YOU

FOR YOUR TIME

© 2013 Quaker Chemical Corporation. All rights reserved.