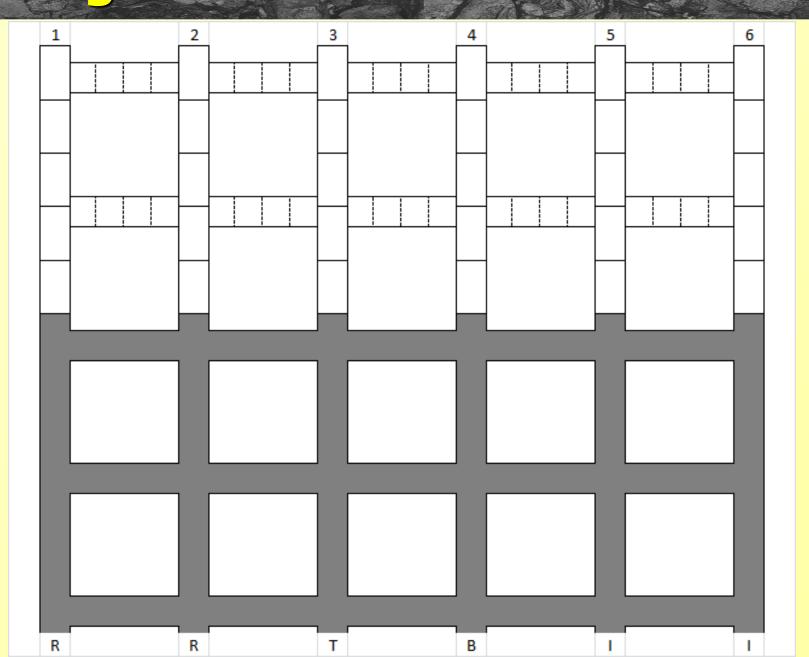
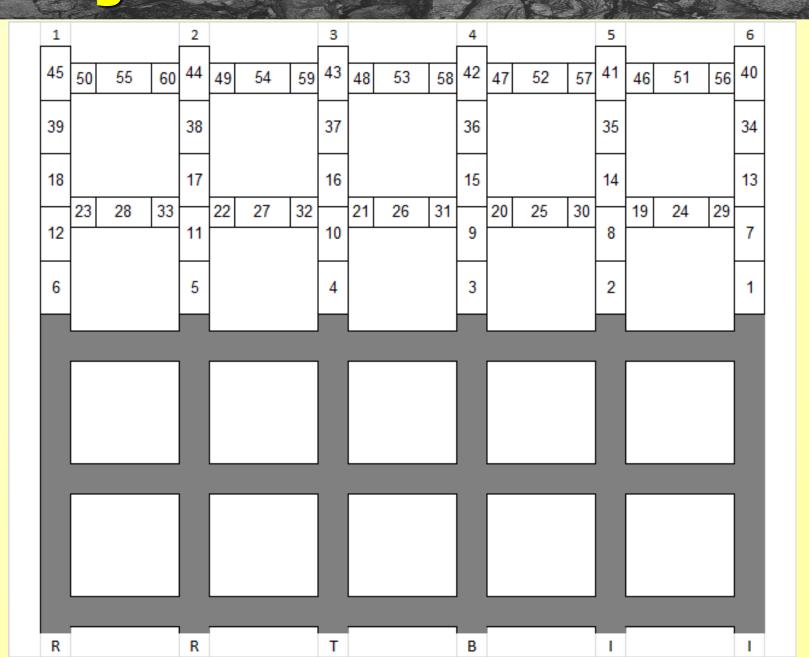
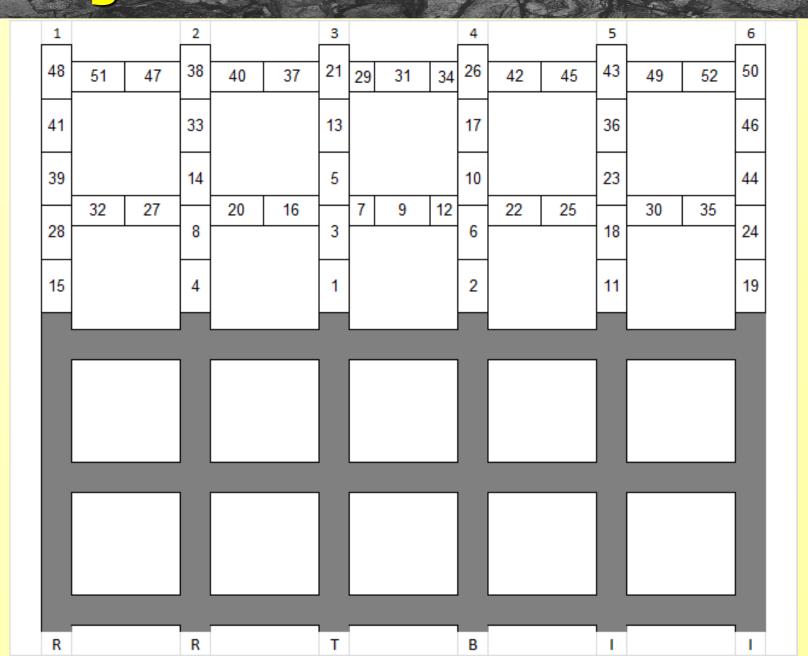
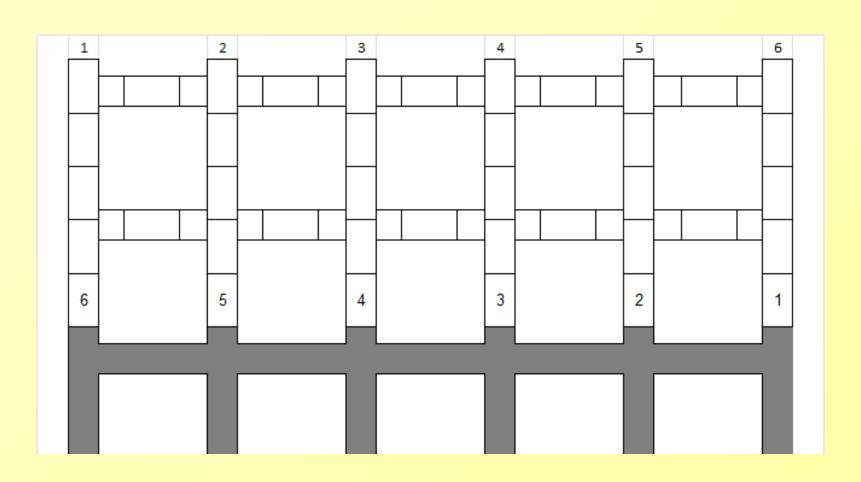

2012 Illinois Mining Institute

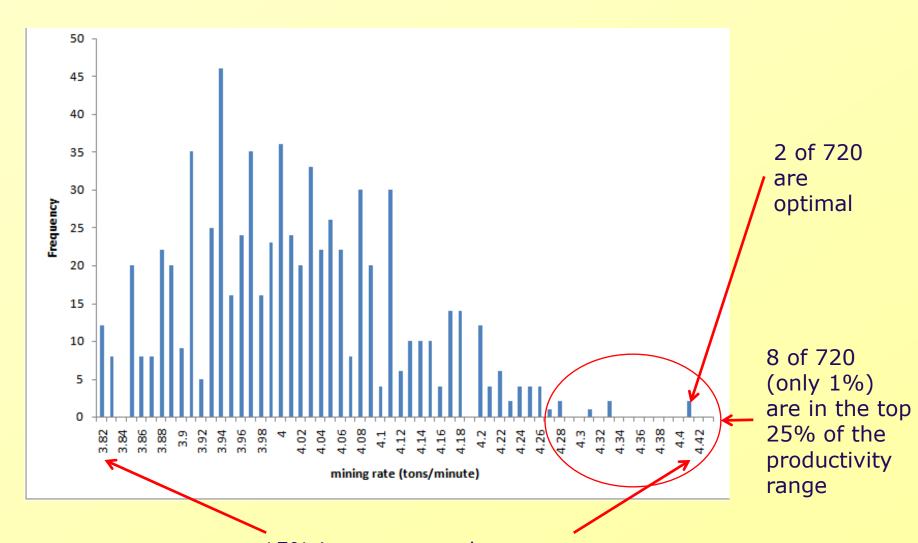

Identifying Optimal Mining Sequences for Continuous Miners


Dr. Joseph C. Hirschi Project Manager Illinois Clean Coal Institute


Presentation Outline

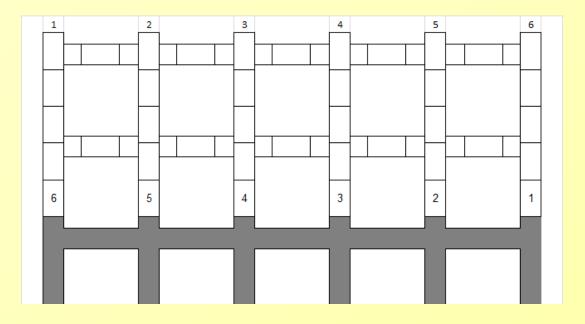
- Background and Current Practice
- Need for Optimization Tool
- Dynamic Programming
- Dynamic Programming Algorithm
- Application Case Study
- Acknowledgements





Need for Optimization Tool

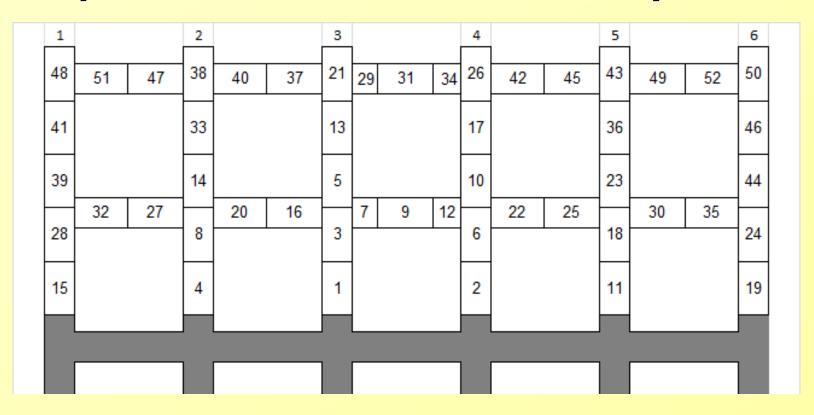
720 different sequences


Need for Optimization Tool

15% improvement between best case and worst case

- Opnomic programming is a recursive, or step-bystep, approach to solving optimization problems.
- At each step, referred to as a STAGE, parameters and constraints of all FEASIBLE options or STATES are evaluated using an OPTIMAL VALUE FUNCTION.
- This requires the following items to be defined:
 - > Stages
 - > Feasible states at each stage
 - Optimal value function (OVF)
 - Recurrence relation

- In room-and-pillar mining:
 - Stages are cuts to be mined



Feasible states at each stage are cuts satisfying boundary conditions and constraints

Constraint Matrix

	Bolting	Ventilation
Regulatory	 No travel inby unsupported top Crosscuts may only be turned out of specified entries Mined areas must be bolted within specified time 	 Time-weighted average dust exposure limits must not be exceeded Roof bolter can be downwind of CM for only two cuts/shift
Operational	 Maintain a buffer between bolting and mining functions Mining cannot occur when bolter blocks haulage path 	 Start crosscuts head-on and mine in the direction of ventilation airflow whenever possible Do not mine entry that is deep enough for mining crosscut

Examples of constraints and boundary conditions

- Room-and-pillar mining has obvious geometric constraints, i.e. Cut #5 cannot be mined until Cut #1 and Cut #3 have been mined.
- Safety regulations dictate other clear constraints, i.e. Cut #1 and Cut #3 must also be bolted before Cut #5 can be mined.

- The optimal value function (OVF) scores feasible states in terms of certain evaluation criteria
 - Productivity
 - Cycle time
 - Dust exposure

- The recurrence relation is used to select the feasible state with the maximum or minimum score, depending on the objective function, i.e.
 - Maximize production
 - Minimize cycle time
 - Minimize dust exposure

Overall Methodology:

- Develop algorithm to quantify the production process
- Use algorithm for selection of cuts

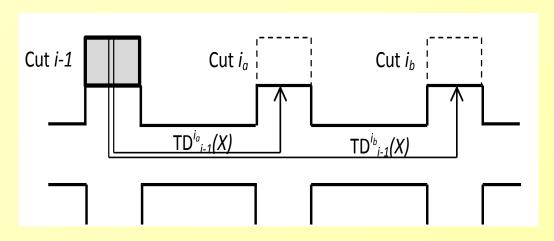
Strategic Planning versus Tactical Planning

Guiding Policies and Practices

- Complete crosscuts in a timely fashion
- Maximize starting crosscuts head-on
- Mine crosscuts in the direction of ventilation air flow
- Maximize double cutting
- Maintain buffer between continuous miner and roof bolter
- Repeatable sequence for each crosscut of advance

Optimal Value Function

$$f_i(X)$$
 = minimum total CCT_i(X) that results from following an optimal policy for stage *i* given state X

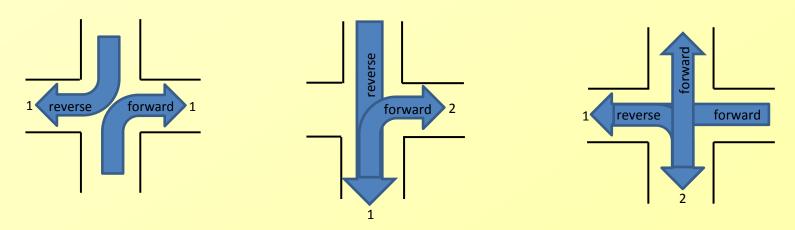

where

```
CCT_i(X) = cut cycle time for stage i given state X
= MOVE_{i-1}^i(X) + PROD_i(X)
```

and $MOVE_{i-1}^{i}(X)$ = the place change element of $CCT_{i}(X)$ from stage i-1 to stage i in state X

PROD_i(X) = the production element of CCT_i(X) for stage *i given state X*

Place Change Element


Parameters

 $TD_{i-1}^{i}(X) = tram distance from stage i-1 to stage i given state X$ $SPD_{CM} = CM tram speed$

Basic Time Value for Place Change Element $TD_{i-1}^{i}(X) / SPD_{CM}$

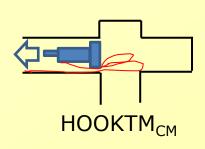
Adjustments to Place Change Element Basic Time Value

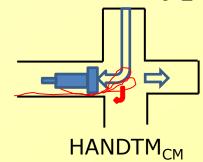
Cornering Adjustment Factor: TCORⁱ_{i-1}(X)

 $TCOR_{i-1}^{i}(X) = [NUMCOR_{i-1}^{i}(X) * CORTM_{CM}] + [NUMDRCH_{i-1}^{i}(X) * DRCHTM_{CM}]$

where $NUMCOR_{i-1}^{i}(X)$ = number of corners negotiated moving from stage i-1 to stage i given state X

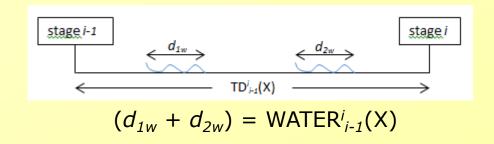

 $CORTM_{CM}$ = extra time required for CM to negotiate a corner


NUMDRCH $_{i-1}^{i}(X)$ = number of times CM reverses direction in negotiating corners while moving from stage i-1 to stage i given state X


 $DRCHTM_{CM}$ = extra time required when CM reverses direction

Adjustments to Place Change Element Basic Time Value

Cable Handling Adjustment Factor: CHⁱ_{i-1}(X)

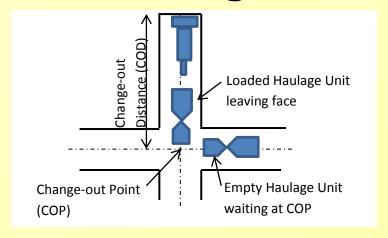



```
CH_{i-1}^{i}(X) = [NUMHANG_{i-1}^{i}(X) * HANGTM_{CM}] + [NUMHOOK_{i-1}^{i}(X) * HOOKTM_{CM}] + [NUMHAND_{i-1}^{i}(X) * HANDTM_{CM}]
```

Adjustments to Place Change Element Basic Time Value

- Road Condition Adjustment Factor: RDCONⁱ_{i-1}(X)
 - > Water
 - Soft roads
 - Bad top


```
\begin{split} &\mathsf{RDCON}^i_{i\text{-}1}(\mathsf{X}) = \\ & \quad \left[ \mathsf{WATER}^i_{i\text{-}1}(\mathsf{X}) \ / \ \mathsf{WATERSPD}_{\mathsf{CM}} \right] - \left[ \mathsf{WATER}^i_{i\text{-}1}(\mathsf{X}) \ / \ \mathsf{SPD}_{\mathsf{CM}} \right] \\ & \quad + \left[ \mathsf{SOFTBT}^i_{i\text{-}1}(\mathsf{X}) \ / \ \mathsf{SOFTBTSPD}_{\mathsf{CM}} \right] - \left[ \mathsf{SOFTBT}^i_{i\text{-}1}(\mathsf{X}) \ / \ \mathsf{SPD}_{\mathsf{CM}} \right] \\ & \quad + \left[ \mathsf{BDTOP}^i_{i\text{-}1}(\mathsf{X}) \ / \ \mathsf{BDTOPSPD}_{\mathsf{CM}} \right] - \left[ \mathsf{BDTOP}^i_{i\text{-}1}(\mathsf{X}) \ / \ \mathsf{SPD}_{\mathsf{CM}} \right] \end{split}
```


Production Element

2 Components

- COT_i(X) = change out time for stage i given state X
- \bullet LT_i(X) = loading time for stage i given state X

Basic Time Value for Production Element $PROD_i(X) = COT_i(X) + LT_i(X)$

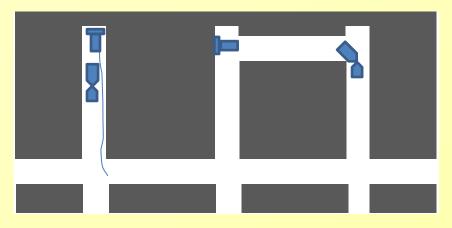
Production Element – Change-out Time Component

Parameters

 $COD_i(X)$ = change-out distance for stage *i* given state X

 SPD_{HU} = haulage unit tram speed

 $TRIPS_i(X) = ROUNDUP[CUTVOL_i(X) / (PLD_{HU} * FILL)]$


SWIN = haulage unit turn-around (switch in) time at COP

Basic Time Value for Change-out Time Component

 $COT_i(X) = \{[2*COD_i(X)/SPD_{HU}]+SWIN\} * TRIPS_i(X)$

Adjustments to Production Element Change-out Time Component

Change-out Condition Adjustment Factor: COCON_i(X)


```
COCON<sub>i</sub>(X) = 1.0 if CO path is unobstructed by hanging line curtain, corners that must be negotiated, and/or poor road conditions = 1.5 if CO path is obstructed by one of the above conditions = 2.0 if CO path is obstructed by two of the above conditions
```

 $COT_i(X) = \{ \{2*COD_i(X)/[SPD_{HU} / COCON_i(X)] \} + SWIN \} * TRIPS_i(X)$

Adjustments to Production Element Change-out Time Component

Wait-on-Car Adjustment Factor: WOC_i(X)

```
WOC_{i}(X) = \{(2/SPD_{HU})^{*}\{HD - [NCARS_{i}(X)-1]^{*}COD_{i}(X)\} + \{PLD/DR_{HU}^{*}[3 - 2^{*}NCARS_{i}(X)]\} + \{SWIN^{*}[2 - NCARS_{i}(X)]\}\} * TRUNC(TRIPS/NCARS)
```

```
COT_{i}(X) = \{\{2*COD_{i}(X)/[SPD_{HU}/COCON_{i}(X)]\}+SWIN\}*TRIPS_{i}(X)\}+WOC_{i}(X)\}
```

Production Element – Loading Time Component Parameters

```
CUTVOL<sub>i</sub>(X) = volume of coal in stage i given state X
= DEPTH<sub>i</sub>(X) * WIDTH<sub>i</sub>(X) * HEIGHT<sub>i</sub>(X) * RCDEN
WIDTH<sub>i</sub>(X)*HEIGHT<sub>i</sub>(X)*RCDEN = constant
= tons/foot of advance (TFA)
```

 LR_{CM} = CM loading rate

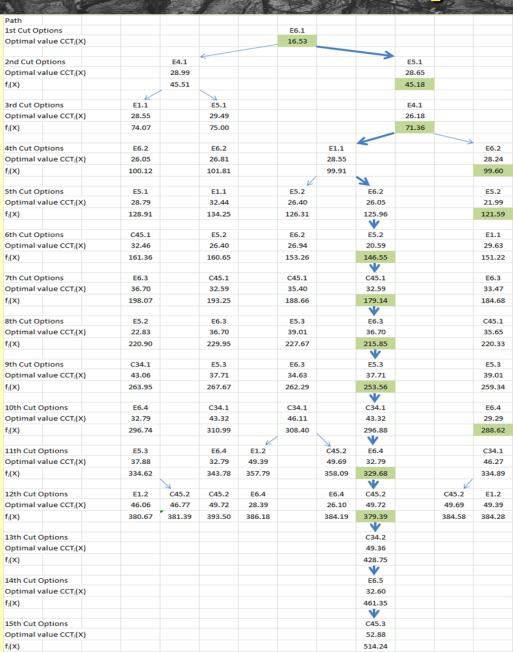
Basic Time Value for Loading Time Component $LT_i(X) = \{[TFA * DEPTH_i(X)] / LR_{CM}\}$

Adjustment to Production Element Loading Time Component

Clean-up Adjustment Factor: WOC_i(X)

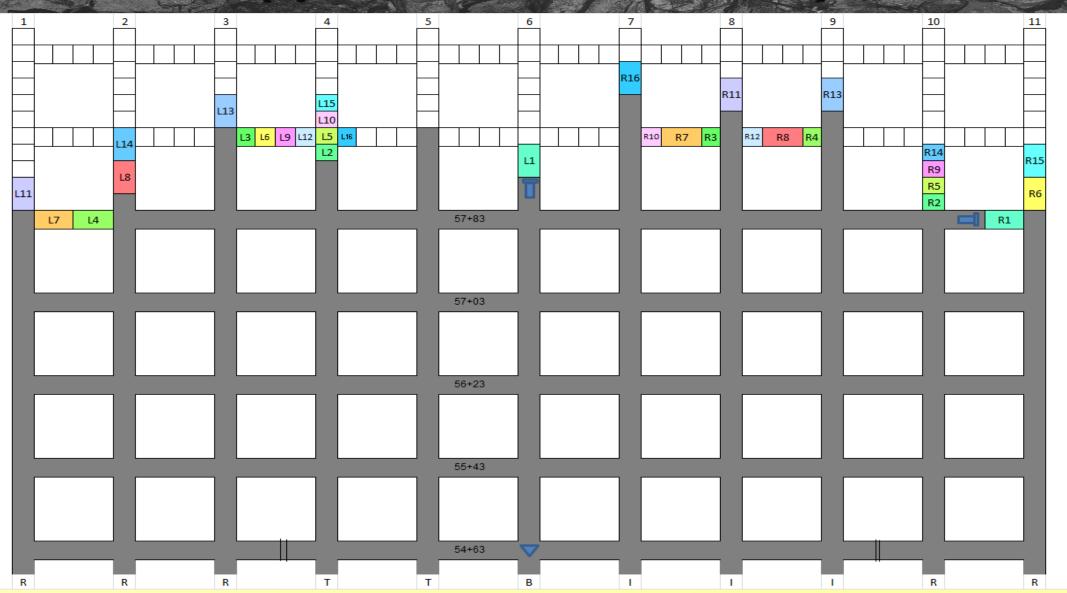
RESET_{HU} = haulage unit reset during cleanup passes

$$LT_i(X) = \{[TFA * DEPTH_i(X)] / LR_{CM}\} + RESET_{HU}$$


Constraint Matrix

	Bolting	Ventilation
Regulatory	 No travel inby unsupported top Turn crosscuts only out of #3, #4, #8, and #9 Entries Mined areas must be bolted within specified time 	 Time-weighted average dust exposure limits must not be exceeded Roof bolter can be downwind of CM for only two cuts/shift
Operational	 Maintain a buffer between bolting and mining functions Mining cannot occur when bolter blocks haulage path 	 Start crosscuts head-on and mine in the direction of ventilation airflow whenever possible Do not mine entry that is deep enough for mining crosscut

Iterations


		#1 Entry	#2 Entry	#3 Entry	#4 Entry	#5 Entry	#6 Entry
Cuts Avai	lable for 4th Cut	E1.1	E2.1	E3.1 C34.1	E4.2 C45.1	E5.2	E6.2
Con	straint - bolt, vent, both			vent	both bolt	bolt	
	Corner/Curtain Factor	1	1.5	1.5			1.5
	HD	480	480	400			240
	COD	99	84	89			104
	WOC Factor	0.84	3.04	-0.10			-2.99
	DEPTH	10	30	20			10
	OSD	30	6	6			18
	TRIPS - number of loads	10	21	14			9
	CO Segment	7.87	20.69	12.30			8.94
	Loading Segment	9.50	18.62	19.13			8.31
Prod	duction Element	17.37	39.31	31.43			17.25
	Number of Corners	2	2	3			2
	Direction Changes	1	1	1			1
	Cable Hook-ons	4	4	3			3
	Cable Handling	0	0	0			2
	TD	345	330	255			270
Plac	ce Change Element	8.21	8.01	7.44			10.99
DP Mode	l CCT Value	25.58	47.32	38.87			28.24

Recursive Paths

Application Case Study R13 R9 R6 L3 L7 L12 L15 L18

Predictetuo phimin granges ceufen de a for 1

Predictetu@pMiniang/SieiqugeSiequfendeafo1Day 12

1				2			3				4			5			6]		7			8			9]			10			11
								\Box			=																						
																							R79			R82							
											\dashv									R68	1		R64			R66	1			R85			Н
							L97	П			=						L95		R87	R60	R78 R	74 R69	R55	R81 F	R75 R70	R58	\square		Ш	R83			
							L91				L101						L87			R43			R49			R51				R71			
				100			L76				L83			L89			177			R37			R31			R36				R61			R86
L99				L98		L102		L80	L84	L90	L79	L96	L100	L82	L94	L88		R59	R53			44 R39	R27	R50 F	R45 R40	R28	R54	R57	R65	R47	R72	R76 R80	R84 R73
L92				L93			L68				L74 L59			L78 L69			L65			R34			R25			R21				R41			R67 R62
L61				L85			L53				L48			L64			L62			R26			R5			R6				R22			R56
	L86		L81	L54	L75	L72	L43	L56	L60	L67	L41 L36	L70	L73	L58 L47	L66	L63	L57	R33	R30	R24	R19	R13 R10		R20	R16 R1	2	R29	R32	R35	R8	R38 R42	R46	R52 R23
L55				L51			L38	-		- 1	L29 L24			L40 L35			L46	-		R18	1									R2			R17
L50		_		L5			L26	,			L20			L15			L27			R4							L						R1
L33	L49		L45		L44 L42	2 L37 L3	1	L4 I	L13 L22	2 L25	L3	L9 L12	L17 L19	L11 L8	L23 L2	8 L32 L	L16		R9				1			1					R3	R7	
L14 L6														L2			L10																П
								L			l				E21	02	L1																
		80				80	7	Г	80			8	0] [53+	80	٦		80	7	8	80			80	1		80			80		
								Ь			L				53+	03											4						
							7	Г									7			1]							
															52+	23														l			
R				R			R		11		T			Т			В			I			1			1				R			R

1	1			2				3				4				5				6			7	1			8			-	9			Г	10			11
																				\downarrow										†	\downarrow			\downarrow	\downarrow			
	-																		+	\dashv						\mid	+			D.	70			-	\dashv			H
																			F	\neg			R71			R	68			R	/8				R86			
								L101				L100								\downarrow			R50	R67 F	R64	R60 R	57 R7	7 R	74 R6	R)	66 R8	1 R84	4 R87	F	R83			
																L99										R	54			R	53			-	R80 R76			R85
								L96				L86				L94			L	98			R43			R	41			R	48			F	R73			R79
				L92			L102	L81	L87	L91	L95		79	L82	L85	L66	L90	LS		77	R56	R53	R28	R40 F	R34	R30 R	27 R4	7 R	44 R3	36 R:	R5	1 R	R59	R62	R46	R65	R70R7	2 R61
L103	3			L88				L75				L69 L53				L58			L	71			R25												R38			R58
L97				L84				L63				L39 L36				L55 L38			L	.68			R16	,		R	14			R	21			F	R35			R52
L89	L8	3	L80	L62	L74	1	L70	L60	L59	L		L33 L	43	L47	L52	L35	L78	L7	72	65	R37	R31	R11	R13	R9	R6	13 F	R20	R17 R	7 R	4 R2	6 R	R29	R32	R23	39 R42	R45	R49
L76								L27				L30 L26				L32 L28				57			R8											\perp				R24
L67				L48				L24				L23				L25			L	.42			R5											F	R18			R22
L64 L50	_	1	L49	L45	L40 L	37 L	.34 L31	L21	L10 L1	3 L16	_	L19 L3	L7 L1	2 L1	5 L18	L22 L9	L29 L4	6 L51		17 14	R15	R12	R2			1	Ь			1	Ь			٦	ı	R10	R19	R1
L44 L41	-						•		•							L6 L2	•	•	_	11 L8										1								m
L4																				L5																		
												L					53+	83		1						_	Ь			1	Ь			٦	ь			
		80)			80)			80				80				80	\neg		8	0			80			8	0	1			80	٦			80	
												L					53+	03	٦	ŀ			J			4	Ь			1	Ь			٦	ь			
												L					52+	23	-	7											<u> </u>			ا				
R				R				R		11		T				T				B															R			R

		AMS			OMS			Difference	·
Day	Cuts	Feet Mined	CCT (min)	Cuts	Feet Mined	CCT (min)	Cuts	Feet Mined	CCT (min)
1	17	276	590	18	252	596	+1	-24	+6
2	15	221	508	17	229	503	+2	+8	-5
3	17	292	521	14	285	538	-3	-7	+17
4	15	375	662	15	384	624	0	+9	-38
5	12	343	600	12	375	598	0	+32	-2
6	13	384	612	13	357	610	0	-27	-2
7	13	394	651	14	402	675	+1	+8	+24
Totals	102	2285	4144	103	2284	4144	+1	-1	0

Left-side CM

Right-side CM

		AMS			OMS		Difference						
Day	Cuts	Feet Mined	CCT (min)	Cuts	Feet Mined	CCT (min)	Cuts	Feet Mined	CCT (min)				
1	12	314	544	14	348	556	+2	+34	+12				
2	13	353	601	13	365	606	0	+12	+5				
3	12	336	554	12	297	533	0	-39	-21				
4	14	329	638	13	355	635	-1	+26	-3				
5	9	245	419	8	214	415	-1	-31	-4				
6	12	292	544	12	282	552	0	-10	+8				
7	15	273	590	15	255	590	0	-18	0				
Totals	87	2142	3890	87	2116	3887	0	-26	-3				

Acknowledgements

0

&

Stan Suboleski (SSP Model)

Larry Grayson (Dynamic Programming)

Paul Chugh (Advisor)

Prairie State Generating Corporation Lively Grove Mine

2012 Illinois Mining Institute

QUESTIONS

on

Identifying Optimal Mining Sequences for Continuous Miner

Joseph C. Hirschi Project Manager Illinois Clean Coal Institute